- PII
- S3034627425060082-1
- DOI
- 10.7868/S3034627425060082
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume / Issue number 6
- Pages
- 119-145
- Abstract
- Due to the enormous technological progress, experts predict that in the near future people will share public spaces, streets and buildings with mobile autonomous robots. They already help people with their daily tasks at home and at work. In addition to technical functions, robots are expected to have social capabilities. Developers strive to create robots that will not disturb, irritate or frighten people. But what should these new robots be like in order to comfortably, reliably and effectively cooperate with people? Should a robot take into account and obey human norms of spatial behavior? Should such interactions take place within the framework of socially and culturally acceptable norms? The solution to these questions is the central research goal of a young scientific discipline Human-Robot Interaction. This review examines modern research of proxemic interaction between robots and humans.
- Keywords
- робот человек проксемика невербальная коммуникация коммуникация человека и робота взаимодействие человека и робота HRI социальный робот
- Date of publication
- 02.02.2026
- Year of publication
- 2026
- Number of purchasers
- 0
- Views
- 5
References
- 1. Безрукова 2022 – Безрукова А. В Москве шахматный робот повредил мальчику палец на турнире // Комсомольская правда. 21.07.2022. https://www.kp.ru/online/news/4841784
- 2. В столичных больницах 2023 – В столичных больницах появились роботы-помощники – робокошки // mos.ru. 22.11.2023. https://www.mos.ru/news/item/132424073
- 3. Джабборов 2022 – Джабборов Д. Московская бабушка помогла перейти дорогу роботу-курьеру “Яндекса” // Газета.Ру. 01.04.2022. https://www.gazeta.ru/tech/news/2022/04/01/17508595.shtml
- 4. Иванова 2024 – Иванова И. Прохожие защитили робота-курьера от человека, который “хотел прокатиться” // Москвич Mag. 16.05.2024. https://moskvichmag.ru/gorod/prohozhie-zashhitili-robota-kurera-ot-cheloveka-kotoryj-hotel-prokatitsya
- 5. Цифровой робот-консьерж 2024 – Цифровой робот-консьерж появится в жилом комплексе в Москве // iot.ru. 30.10.2024. https://iot.ru/gorodskaya-sreda/tsifrovoy-robot-konserzh-poyavitsya-v-zhilom-komplekse-v-moskve
- 6. Человекоподобный робот 2024 – Человекоподобный робот “Егорка” будет помогать дефектологам в занятиях с детьми // Фарммедпром. 18.11.2024. https://pharmmedprom.ru/news/v-rossii-ispitali-robota-pomoschnika-defektologa-dlya-zanyatii-s-detmi
- 7. Weller 2017 – Weller C. Meet the First-Ever Robot Citizen – A Humanoid Named Sophia That Once Said It Would “Destroy Humans” // Foundation for Jewish Camp. 27.10.2017. https://jewishcamp.org/wp-content/uploads/2018/05/Sophia-Article-Golem.pdf
- 8. Бутовская М.Л. Язык тела: природа и культура. М.: Научный мир, 2004.
- 9. Бутовская М.Л., Левашова В.В. Скорость движения и язык тела пешеходов в условиях современного города: этологический анализ // Археология, этнография и антропология Евразии. 2004. № 3 (19). С. 147–156.
- 10. Зильберман Н.Н., Стефанцова М.А. Социальный робот: подходы к определению понятия // Современные исследования социальных проблем. 2016. № 11 (67). C. 297–312. https://doi.org/10.12731/2218-7405-2016-11-297-312
- 11. Морозов И.А. “Кодекс робота”: к вопросу об этических основах “постгуманистической цивилизации” // Технологии и телесность / Отв. ред. С.В. Соколовский. М.: ИЭА РАН, 2018. С. 309–358.
- 12. Соколовский С.В. Тело киборга: человек и концепция расширенного организма // Сибирские исторические исследования. 2022. № 2. С. 6–26. https://doi.org/10.17223/2312461X/36/1
- 13. Феденок Ю.Н. Коммуникативное поведение русских школьников (сравнительный аспект) // Этнографическое обозрение. 2012. № 5. С. 119–138.
- 14. Феденок Ю.Н., Буркова В.Н. Подходы и методы в изучении проксемического поведения человека: аналитический обзор // Этнографическое обозрение. 2021. № 6. С. 165–188. https://doi.org/10.31857/S086954150017940-4
- 15. Юревич Е.И. Основы роботехники: учебное пособие. СПб.: БВХ-Петербург, 2017.
- 16. Aiello J.R. A Further Look at Equilibrium Theory: Visual Interaction as a Function of Interpersonal Distance // Environmental Psychology and Nonverbal Behavior. 1977. Vol. 1 (2). P. 122–140. https://doi.org/10.1007/BF01145461
- 17. Albeaino G., Jeelani I., Gheisari M., Issa R.R.A. Assessing Proxemics Impact on Human-Robot Collaboration Safety in Construction: A Virtual Reality Study with Four-Legged Robots // Safety Science. 2025. Vol. 181. P. 106682. https://doi.org/10.1016/j.ssci.2024.106682
- 18. Allen A., Drummond T., Kulić D. Sound Judgment: Properties of Consequential Sounds Affecting Human-Perception of Robots // arXiv:2502.02051v1 [cs.RO]. 2025. https://doi.org/10.48550/arXiv.2502.02051
- 19. Bailenson J.N., Blascovich J., Beall A.C., Loomis J.M. Equilibrium Theory Revisited: Mutual Gaze and Personal Space in Virtual Environments // Presence: Teleoperators and Virtual Environments. 2001. Vol. 10 (6). P. 583–598. https://doi.org/10.1162/105474601753272844
- 20. Bartneck C. et al. Cultural Differences in Attitudes Towards Robots // Proceedings of the AISB Symposium on Robot Companions: Hard Problems and Open Challenges in Human-Robot Interaction. 2005. P. 1–4. https://doi.org/10.13140/RG.2.2.22507.34085
- 21. Bera A. et al. The Emotionally Intelligent Robot: Improving Social Navigation in Crowded Environments // arXiv:1903.03217v1 [cs.RO]. 2019. https://doi.org/10.48550/arXiv.1903.03217
- 22. Breazeal C., Scassellati B. Infant-Like Social Interactions Between a Robot and a Human Caregiver // Adaptive Behavior. 2000. Vol. 8 (1). P. 49–74. https://doi.org/10.1177/105971230000800104
- 23. Butler J.T., Agah A. Psychological Effects of Behavior Patterns of a Mobile Personal Robot. 2001. Vol. 10. P. 185–202. https://doi.org/10.1023/A:1008986004181
- 24. Čapek K. R.U.R. (Rossum’s Universal Robots). Fayetteville: Penguin Classics, 2004.
- 25. Castelo N., Sarvary M. Cross-Cultural Differences in Comfort with Humanlike Robots // International Journal of Social Robotics. 2022. Vol. 14 (8). P. 1865–1873. https://doi.org/10.1007/s12369-022-00920-y
- 26. Chik S.F. et al. Neural-Network Based Adaptive Proxemics-Costmap for Human-Aware Autonomous Robot Navigation // International Journal of Integrated Engineering. 2019. Vol. 11 (4). P. 101–111. https://doi.org/10.30880/ijie.2019.11.04.011
- 27. Clavero J.G. et al. Defining Adaptive Proxemic Zones for Activity-Aware Navigation // arXiv:2009.04770v1 [cs.RO]. 2020. https://doi.org/10.48550/arXiv.2009.0477
- 28. Crick C., Doniec M., Scassellati B. Who Is It? Inferring Role and Intent from Agent Motion // Proceedings of the 6th International Conference on Development and Learning. Bern, Switzerland. 11–13 July 2007. P. 134–139.
- 29. Dubois M., Claret J.A., Basañez L., Venture G. Influence of Emotional Motions in Human-Robot Interactions // Proceedings of the International Symposium on Experimental Robotics. Nagasaki. 03–08 October 2016. P. 799–808.
- 30. Eresha G. et al. Investigating the Influence of Culture on Proxemic Behaviors for Humanoid Robots // Proceedings of the 2013 IEEE Ro-Man. Gyeongju. 02–29 August 2013. P. 430–435. https://doi.org/10.1109/ROMAN.2013.6628517
- 31. Fiore S.M. et al. Axelrod Toward Understanding Social Cues and Signals in Human-Robot Interaction: Effects of Robot Gaze and Proxemic Behavior // Frontiers in Psychology. 2013. Vol. 4. P. 8–59. https://doi.org/10.3389/fpsyg.2013.00859
- 32. Friedman D., Steed A., Slater M. Spatial Social Behavior in Second Life // Intelligent Virtual Agents. 2007. № 4722. P. 252–263.
- 33. Frith C.D., Frith U. How We Predict What Other People Are Going to Do // Brain Research. 2006. Vol. 1079 (1). P. 36–46. https://doi.org/10.1016/j.brainres.2005.12.126
- 34. Ginés J. et al. Social Navigation in a Cognitive Architecture Using Dynamic Proxemic Zones // Sensors. 2019. Vol. 19 (23). P. 5189. https://doi.org/10.3390/s19235189
- 35. Hall E.T. The Hidden Dimension. N.Y.: Doubleday & Company, Inc., 1966.
- 36. Haring K.S., Mougenot C., Ono F., Watanabe K. Cultural Differences in Perception and Attitude Towards Robots // International Journal of Impact Engineering. 2014. Vol. 13 (3). P. 149–157. https://doi.org/10.5057/ijae.13.149
- 37. Hasegawa Y., Dias C., Iryo-Asan M., Nishiuchi H. Modeling Pedestrians’ Subjective Danger Perception Toward Personal Mobility Vehicles // Transportation Research Part F: Traffic Psychology and Behaviour. 2018. Vol. 56. P. 256–267. https://doi.org/10.1016/J.TRF.2018.04.016
- 38. He K. et al. Robot Gaze During Autonomous Navigation and Its Effect on Social Presence // International Journal of Social Robotics. 2024. Vol. 16. P. 879–897. https://doi.org/10.1007/s12369-023-01023-y
- 39. Hirose M., Ogawa K. Honda Humanoid Robots Development // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007. Vol. 365 (1850). P. 11–19. http://doi.org/10.1098/rsta.2006.1917
- 40. Joosse M., Poppe R.W., Lohse M., Evers V. Cultural Differences in how an Engagement-Seeking Robot Should Approach a Group of People // Proceedings of the 5th ACM International Conference on Collaboration Across Boundaries: Culture, Distance & Technology. Kyoto, Japan. 20–22 August 2014. P. 121–130. https://doi.org/10.1145/2631488.2631499
- 41. Jung S. et al. Proximity Zones Based on Perceived Danger in Human-Robot Interaction // Proceedings of the International Conference on Human-Robot Interaction. Melbourne, Australia. 04–06 March 2025. P. 1378–1382.
- 42. Kamide H. et al. A Comparative Psychological Evaluation of a Robotic Avatar in Dubai and Japan // Frontiers in Robotics and AI. 2025. Vol. 11. P. 1426717. https://doi.org/10.3389/frobt.2024.1426717
- 43. Kaplan F. Who Is Afraid of the Humanoid? Investigating Cultural Differences in the Acceptance of Robots // International Journal of Humanoid Robotics. 2004. Vol. 1 (4). P. 465–480. https://doi.org/10.1142/s0219843604000289
- 44. Kastner K. et al. Determinants of the Acceptability of Autonomous (Cargo) Mobility // Transportation Research Interdisciplinary Perspectives. 2021. Vol. 11 (10). P. 100448. https://doi.org/10.1016/j.trip.2021.100448
- 45. Kilner J.M., Friston K.J., Frith C.D. Predictive Coding: An Account of the Mirror Neuron System // Cognitive Processing. 2007. Vol. 8 (3). P. 159–166. https://doi.org/10.1007/s10339-007-0170-2
- 46. Koay K.L. et al. Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot // International Journal of Social Robotics. 2014. Vol. 6 (4). P. 469–488. https://doi.org/10.1007/s12369-014-0232-4
- 47. Kruse T., Pandey A.K., Alami R., Kirsch A. Human-Aware Robot Navigation: A Survey // Robotics and Autonomous Systems. 2013. Vol. 61 (12). P. 1726–1743. https://doi.org/10.1016/j.robot.2013.05.007
- 48. Lehmann H., Rojik A., Hoffmann M. Should a Small Robot Have a Small Personal Space? Investigating Personal Spatial Zones and Proxemic Behavior in Human-Robot Interaction // arXiv:2009.01818v1 [cs.HC]. 2020. https://doi.org/10.48550/arXiv.2009.01818
- 49. Li Y. et al. How Service Robots’ Human-Like Appearance Impacts Consumer Trust: A Study Across Diverse Cultures and Service Settings // International Journal of Contemporary Hospitality Management. 2024. Vol. 36 (9). P. 3151–3167. https://doi.org/10.1108/IJCHM-06-2023-0845
- 50. Lim V., Rooksby M., Cross E.S. Social Robots on a Global Stage: Establishing a Role for Culture During Human–Robot Interaction // International Journal of Social Robotics. 2021. Vol. 13 (6). P. 1307–1333. https://doi.org/10.1007/s12369-020-00710-4
- 51. Mead R., Matarić M.J. Perceptual Models of Human-Robot Proxemics // Experimental Robotics. 2016. Vol. 109. P. 261–276. https://doi.org/10.1007/978-3-319-23778-7_18
- 52. Mertens A. et al. Human-Robot Interaction: Testing Distances That Humans Will Accept Between Themselves and a Robot Approaching at Different Speeds // Ambient Assisted Living: 6. AAL-Kongress 2013, Berlin, Germany, January 22–23, 2013 / Eds. R. Wichert, H. Klausing. Heidelberg: Springer Berlin, 2014. P. 269–286. https://doi.org/10.1007/978-3-642-37988-8_17
- 53. Mu X. et al. Online Robot Motion Planning Methodology Guided by Group Social Proxemics Feature // arXiv:2502.04837v1 [cs.RO]. 2025. https://doi.org/10.48550/arXiv.2502.04837
- 54. Mumm J., Mutlu B. Human-Robot Proxemics: Physical and Psychological Distancing in Human-Robot Interaction // Proceedings of the 6th International Conference on Human-Robot Interaction. Lausanne, Switzerland. 06–09 March 2011. P. 331–338. https://doi.org/10.1145/1957656.1957786
- 55. Murakami H., Feliciani C., Nishiyama Y., Nishinari K. Mutual Anticipation Can Contribute to Self-Organization in Human Crowds // Science Advances. 2021. Vol. 7 (12). P. eabe7758. https://doi.org/10.1126/sciadv.abe7758
- 56. Mutlu B., Forlizzi J. Robots in Organizations: The Role of Workflow, Social, and Environmental Factors in Human-Robot Interaction // Proceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction. Amsterdam, Netherlands. 12–15 March 2008. P. 287–294. https://doi.org/10.1145/1349822.1349860
- 57. Nassiri N., Powell N., Moore D. Human Interactions and Personal Space in Collaborative Virtual Environments // Virtual Reality. 2010. Vol. 14 (4). P. 229–240. https://doi.org/10.1007/s10055-010-0169-3
- 58. Neef N.E., Zabel S., Lauckner M., Otto S. What is Appropriate? On the Assessment of Human-Robot Proxemics for Casual Encounters in Closed Environments // International Journal of Social Robotics. 2023. Vol. 15. P. 953–967. https://doi.org/10.1007/s12369-023-01004-1
- 59. Neggers M.M.E., Cuijpers R.N., Ruijten P.A.M., Ijsselsteijn W.A. Determining Shape and Size of Personal Space of a Human when Passed by a Robot // International Journal of Social Robotics. 2021. Vol. 14. P. 561–572. https://doi.org/10.1007/s12369-021-00805-6
- 60. Nomura T., Shintani T., Fujii K., Hokabe K. Experimental Investigation of Relationships Between Anxiety, Negative Attitudes, and Allowable Distance of Robots // Proceedings of the 2nd IASTED International Conference on Human-Computer Interaction. Chamonix, France. 14–16 March 2007. P. 13–18.
- 61. Obaid M. et al. Stop! That Is Close Enough: How Body Postures Influence Human-Robot Proximity // 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). New York, USA. 26–31 August 2016. P. 354–361. https://doi.org/10.1109/ROMAN.2016.7745155
- 62. Oskoei M.A., Walters M.L., Dautenhahn K. An Autonomous Proxemic System for a Mobile Companion Robot // Proceedings of the 2nd International Symposium on New Frontiers in Human-Robot Interaction. Leicester, UK. 29 March – 01 April 2010. P. 9–15.
- 63. Pacchierotti E., Christensen H.I., Jensfelt P. Evaluation of Passing Distance for Social Robots // The 15th IEEE International Symposium on Robot and Human Interactive Communication. Hatfield, UK. 06–08 September 2006. P. 315–320. https://doi.org/10.1109/ROMAN.2006.314436
- 64. Paterson M. Why Robot Embodiment Matters: Questions of Disability, Race and Intersectionality in the Design of Social Robots // Medical Humanities. 2024. Vol. 50 (4). P. 694–704. https://doi.org/10.1136/medhum-2024-013028
- 65. Patompak P., Jeong S., Nilkhamhang I., Chong N.Y. Learning Proxemics for Personalized Human–Robot Social Interaction // International Journal of Social Robotics. 2019. Vol. 12 (2). P. 267–280. https://doi.org/10.1007/s12369-019-00560-9
- 66. Rossi S. et al. User’s Personality and Activity Influence on HRI Comfortable Distances // Proceedings of the International Conference on Social Robotics. Tsukuba, Japan. 22–24 November 2017. P. 167–177. https://doi.org/10.1007/978-3-319-70022-9_17
- 67. Samarakoon S.M.B.P., Muthugala M.A.V.J., Jayasekara A.G.B.P. A Review on Human–Robot Proxemics // Electronics. 2022. Vol. 11 (16). P. 2490. https://doi.org/10.3390/electronics11162490
- 68. Stange S. et al. Self-Explaining Social Robots: An Explainable Behavior Generation Architecture for Human-Robot Interaction // Frontiers in Artificial Intelligence. 2022. Vol. 5. P. 866920. https://doi.org/10.3389/frai.2022.866920
- 69. Stratton L.O., Tekippe D.J., Flick G.L. Personal Space and Self-Concept // Sociometry. 1973. Vol. 36 (3). P. 424–429. https://doi.org/10.2307/2786344
- 70. Syrdal D.S., Koay K.L., Walters M.L., Dautenhahn K. A Personalized Robot Companion? The Role of Individual Differences on Spatial Preferences in HRI Scenarios // RO-MAN 2007: The 16th IEEE International Symposium on Robot and Human Interactive Communication. Jeju, Korea (South). 26–29 August 2007. P. 1143–1148. https://doi.org/10.1109/ROMAN.2007.4415252
- 71. Takayama L., Pantofaru C. Influences on Proxemic Behaviors in Human-Robot Interaction // International Conference on Intelligent Robots and Systems. St. Louis, USA. 10–15 October 2009. P. 5495–5502. https://doi.org/10.1109/IROS.2009.5354145
- 72. Thrun S. Toward a Framework for Human-Robot Interaction // Human–Computer Interaction. 2004. Vol. 19 (1–2). P. 9–24. https://doi.org/10.1080/07370024.2004.9667338
- 73. Trovato G. et al. Cross-Cultural Study on Human-Robot Greeting Interaction: Acceptance and Discomfort by Egyptians and Japanese // Paladyn, Journal of Behavioral Robotics. 2013. Vol. 4 (2). P. 83–93. https://doi.org/10.2478/pjbr-2013-0006
- 74. Trovato G. et al. The Sound or Silence: Investigating the Influence of Robot Noise on Proxemics // Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). Nanjing, China. 27–31 August 2018. P. 713–718. https://doi.org/10.1109/ROMAN.2018.8525795
- 75. Vega A. et al. Socially Aware Robot Navigation System in Human-Populated and Interactive Environments Based on an Adaptive Spatial Density Function and Space Affordances // Pattern Recognition Letters. 2019. Vol. 118. P. 72–84. https://doi.org/10.1016/j.patrec.2018.07.015
- 76. Vigni F., Maglietta D., Rossi S. Too Close to You? A Study on Emotion-Adapted Proxemics Behaviours // 33rd IEEE International Conference on Robot and Human Interactive Communication. Pasadena, USA. 26–30 August 2024. P. 182–188. https://doi.org/10.1109/RO-MAN60168.2024.10731458
- 77. Walters M.L., Oskoei M.A., Syrdal D.S., Dautenhahn K. A Long-Term Human-Robot Proxemic Study // Proceedings – IEEE International Workshop on Robot and Human Interactive Communication. Atlanta, USA. 2011. P. 137–142. https://doi.org/10.1109/ROMAN.2011.6005274
- 78. Wang I., Ruiz J., Kappas A. Body Language Between Humans and Machines // Body Language Communication / Eds. D. Chadee, A. Kostić. Cham: Palgrave Macmillan, 2024. P. 443–476. https://doi.org/10.1007/978-3-031-70064-4_18
- 79. Weiss A. et al. Transferring Human-Human Interaction Studies to HRI Scenarios in Public Space // 13th International Conference on Human-Computer Interaction (INTERACT). Lisbon, Portugal. 05–09 September 2011. P. 230–247. https://doi.org/10.1007/978-3-642-23771-3_18
- 80. Wilcox L.M., Allison R.S., Elfassy S., Grelik C. Personal Space in Virtual Reality // ACM Transactions on Applied Perception. 2006. Vol. 3 (4). P. 412–428. https://doi.org/10.1145/1190036.1190041
- 81. Yang S. et al. Experiences Developing Socially Acceptable Interactions for a Robotic Trash Barrel // 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). Kobe, Japan. 31 August – 01 September 2015. P. 277–284. https://doi.org/10.1109/ROMAN.2015.7333693
- 82. Yeh A. et al. Exploring Proxemics for Human-Drone Interaction // HAI 17 – Proceedings of the 5th International Conference on Human Agent Interaction. Bielefeld, Germany. 17–20 October 2017. P. 81–88. https://doi.org/10.1145/3125739.3125773
- 83. Yu W., Kok S.Y., Srivastava G. EmoiPlanner: Human Emotion and Intention Aware Socially Acceptable Robot Navigation in Human-Centric Environments // Expert Systems. 2025. Vol. 42 (2). P. e13718. https://doi.org/10.1111/exsy.13718
- 84. Zeelenberg M., Nelissen R., Breugelmans S.M., Pieters R. On Emotion Specificity in Decision Making: Why Feeling Is for Doing // Judgment and Decision Making. 2008. Vol. 3 (1). P. 18–27. https://doi.org/10.1017/S1930297500000139