- Код статьи
- S3034627425060082-1
- DOI
- 10.7868/S3034627425060082
- Тип публикации
- Статья
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том / Номер выпуска 6
- Страницы
- 119-145
- Аннотация
- В связи со стремительным технологическим прогрессом эксперты прогнозируют, что в ближайшем будущем люди будут делить общественные пространства, улицы и здания с мобильными автономными роботами. Они уже помогают людям в решении их повседневных задач как в быту, так и на работе. Ожидается, что, помимо технических функций, роботы должны обладать и социальными способностями. Разработчики стремятся создавать роботов, которые не будут беспокоить, раздражать или пугать людей. Но какими должны быть эти новые роботы, чтобы комфортно, надежно и эффективно сотрудничать с людьми? Должен ли робот подчиняться человеческим нормам пространственного поведения и учитывать их? Должно ли подобное взаимодействие происходить в рамках социально и культурно приемлемых норм? Решение этих вопросов представляет собой центральную цель молодой научной дисциплины — коммуникации человека и робота (Human-Robot Interaction). В данной обзорной аналитической статье рассмотрены современные исследования проксемического взаимодействия роботов и человека.
- Ключевые слова
- робот человек проксемика невербальная коммуникация коммуникация человека и робота взаимодействие человека и робота HRI социальный робот
- Дата публикации
- 02.02.2026
- Год выхода
- 2026
- Всего подписок
- 0
- Всего просмотров
- 3
Библиография
- 1. Безрукова 2022 – Безрукова А. В Москве шахматный робот повредил мальчику палец на турнире // Комсомольская правда. 21.07.2022. https://www.kp.ru/online/news/4841784
- 2. В столичных больницах 2023 – В столичных больницах появились роботы-помощники – робокошки // mos.ru. 22.11.2023. https://www.mos.ru/news/item/132424073
- 3. Джабборов 2022 – Джабборов Д. Московская бабушка помогла перейти дорогу роботу-курьеру “Яндекса” // Газета.Ру. 01.04.2022. https://www.gazeta.ru/tech/news/2022/04/01/17508595.shtml
- 4. Иванова 2024 – Иванова И. Прохожие защитили робота-курьера от человека, который “хотел прокатиться” // Москвич Mag. 16.05.2024. https://moskvichmag.ru/gorod/prohozhie-zashhitili-robota-kurera-ot-cheloveka-kotoryj-hotel-prokatitsya
- 5. Цифровой робот-консьерж 2024 – Цифровой робот-консьерж появится в жилом комплексе в Москве // iot.ru. 30.10.2024. https://iot.ru/gorodskaya-sreda/tsifrovoy-robot-konserzh-poyavitsya-v-zhilom-komplekse-v-moskve
- 6. Человекоподобный робот 2024 – Человекоподобный робот “Егорка” будет помогать дефектологам в занятиях с детьми // Фарммедпром. 18.11.2024. https://pharmmedprom.ru/news/v-rossii-ispitali-robota-pomoschnika-defektologa-dlya-zanyatii-s-detmi
- 7. Weller 2017 – Weller C. Meet the First-Ever Robot Citizen – A Humanoid Named Sophia That Once Said It Would “Destroy Humans” // Foundation for Jewish Camp. 27.10.2017. https://jewishcamp.org/wp-content/uploads/2018/05/Sophia-Article-Golem.pdf
- 8. Бутовская М.Л. Язык тела: природа и культура. М.: Научный мир, 2004.
- 9. Бутовская М.Л., Левашова В.В. Скорость движения и язык тела пешеходов в условиях современного города: этологический анализ // Археология, этнография и антропология Евразии. 2004. № 3 (19). С. 147–156.
- 10. Зильберман Н.Н., Стефанцова М.А. Социальный робот: подходы к определению понятия // Современные исследования социальных проблем. 2016. № 11 (67). C. 297–312. https://doi.org/10.12731/2218-7405-2016-11-297-312
- 11. Морозов И.А. “Кодекс робота”: к вопросу об этических основах “постгуманистической цивилизации” // Технологии и телесность / Отв. ред. С.В. Соколовский. М.: ИЭА РАН, 2018. С. 309–358.
- 12. Соколовский С.В. Тело киборга: человек и концепция расширенного организма // Сибирские исторические исследования. 2022. № 2. С. 6–26. https://doi.org/10.17223/2312461X/36/1
- 13. Феденок Ю.Н. Коммуникативное поведение русских школьников (сравнительный аспект) // Этнографическое обозрение. 2012. № 5. С. 119–138.
- 14. Феденок Ю.Н., Буркова В.Н. Подходы и методы в изучении проксемического поведения человека: аналитический обзор // Этнографическое обозрение. 2021. № 6. С. 165–188. https://doi.org/10.31857/S086954150017940-4
- 15. Юревич Е.И. Основы роботехники: учебное пособие. СПб.: БВХ-Петербург, 2017.
- 16. Aiello J.R. A Further Look at Equilibrium Theory: Visual Interaction as a Function of Interpersonal Distance // Environmental Psychology and Nonverbal Behavior. 1977. Vol. 1 (2). P. 122–140. https://doi.org/10.1007/BF01145461
- 17. Albeaino G., Jeelani I., Gheisari M., Issa R.R.A. Assessing Proxemics Impact on Human-Robot Collaboration Safety in Construction: A Virtual Reality Study with Four-Legged Robots // Safety Science. 2025. Vol. 181. P. 106682. https://doi.org/10.1016/j.ssci.2024.106682
- 18. Allen A., Drummond T., Kulić D. Sound Judgment: Properties of Consequential Sounds Affecting Human-Perception of Robots // arXiv:2502.02051v1 [cs.RO]. 2025. https://doi.org/10.48550/arXiv.2502.02051
- 19. Bailenson J.N., Blascovich J., Beall A.C., Loomis J.M. Equilibrium Theory Revisited: Mutual Gaze and Personal Space in Virtual Environments // Presence: Teleoperators and Virtual Environments. 2001. Vol. 10 (6). P. 583–598. https://doi.org/10.1162/105474601753272844
- 20. Bartneck C. et al. Cultural Differences in Attitudes Towards Robots // Proceedings of the AISB Symposium on Robot Companions: Hard Problems and Open Challenges in Human-Robot Interaction. 2005. P. 1–4. https://doi.org/10.13140/RG.2.2.22507.34085
- 21. Bera A. et al. The Emotionally Intelligent Robot: Improving Social Navigation in Crowded Environments // arXiv:1903.03217v1 [cs.RO]. 2019. https://doi.org/10.48550/arXiv.1903.03217
- 22. Breazeal C., Scassellati B. Infant-Like Social Interactions Between a Robot and a Human Caregiver // Adaptive Behavior. 2000. Vol. 8 (1). P. 49–74. https://doi.org/10.1177/105971230000800104
- 23. Butler J.T., Agah A. Psychological Effects of Behavior Patterns of a Mobile Personal Robot. 2001. Vol. 10. P. 185–202. https://doi.org/10.1023/A:1008986004181
- 24. Čapek K. R.U.R. (Rossum’s Universal Robots). Fayetteville: Penguin Classics, 2004.
- 25. Castelo N., Sarvary M. Cross-Cultural Differences in Comfort with Humanlike Robots // International Journal of Social Robotics. 2022. Vol. 14 (8). P. 1865–1873. https://doi.org/10.1007/s12369-022-00920-y
- 26. Chik S.F. et al. Neural-Network Based Adaptive Proxemics-Costmap for Human-Aware Autonomous Robot Navigation // International Journal of Integrated Engineering. 2019. Vol. 11 (4). P. 101–111. https://doi.org/10.30880/ijie.2019.11.04.011
- 27. Clavero J.G. et al. Defining Adaptive Proxemic Zones for Activity-Aware Navigation // arXiv:2009.04770v1 [cs.RO]. 2020. https://doi.org/10.48550/arXiv.2009.0477
- 28. Crick C., Doniec M., Scassellati B. Who Is It? Inferring Role and Intent from Agent Motion // Proceedings of the 6th International Conference on Development and Learning. Bern, Switzerland. 11–13 July 2007. P. 134–139.
- 29. Dubois M., Claret J.A., Basañez L., Venture G. Influence of Emotional Motions in Human-Robot Interactions // Proceedings of the International Symposium on Experimental Robotics. Nagasaki. 03–08 October 2016. P. 799–808.
- 30. Eresha G. et al. Investigating the Influence of Culture on Proxemic Behaviors for Humanoid Robots // Proceedings of the 2013 IEEE Ro-Man. Gyeongju. 02–29 August 2013. P. 430–435. https://doi.org/10.1109/ROMAN.2013.6628517
- 31. Fiore S.M. et al. Axelrod Toward Understanding Social Cues and Signals in Human-Robot Interaction: Effects of Robot Gaze and Proxemic Behavior // Frontiers in Psychology. 2013. Vol. 4. P. 8–59. https://doi.org/10.3389/fpsyg.2013.00859
- 32. Friedman D., Steed A., Slater M. Spatial Social Behavior in Second Life // Intelligent Virtual Agents. 2007. № 4722. P. 252–263.
- 33. Frith C.D., Frith U. How We Predict What Other People Are Going to Do // Brain Research. 2006. Vol. 1079 (1). P. 36–46. https://doi.org/10.1016/j.brainres.2005.12.126
- 34. Ginés J. et al. Social Navigation in a Cognitive Architecture Using Dynamic Proxemic Zones // Sensors. 2019. Vol. 19 (23). P. 5189. https://doi.org/10.3390/s19235189
- 35. Hall E.T. The Hidden Dimension. N.Y.: Doubleday & Company, Inc., 1966.
- 36. Haring K.S., Mougenot C., Ono F., Watanabe K. Cultural Differences in Perception and Attitude Towards Robots // International Journal of Impact Engineering. 2014. Vol. 13 (3). P. 149–157. https://doi.org/10.5057/ijae.13.149
- 37. Hasegawa Y., Dias C., Iryo-Asan M., Nishiuchi H. Modeling Pedestrians’ Subjective Danger Perception Toward Personal Mobility Vehicles // Transportation Research Part F: Traffic Psychology and Behaviour. 2018. Vol. 56. P. 256–267. https://doi.org/10.1016/J.TRF.2018.04.016
- 38. He K. et al. Robot Gaze During Autonomous Navigation and Its Effect on Social Presence // International Journal of Social Robotics. 2024. Vol. 16. P. 879–897. https://doi.org/10.1007/s12369-023-01023-y
- 39. Hirose M., Ogawa K. Honda Humanoid Robots Development // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2007. Vol. 365 (1850). P. 11–19. http://doi.org/10.1098/rsta.2006.1917
- 40. Joosse M., Poppe R.W., Lohse M., Evers V. Cultural Differences in how an Engagement-Seeking Robot Should Approach a Group of People // Proceedings of the 5th ACM International Conference on Collaboration Across Boundaries: Culture, Distance & Technology. Kyoto, Japan. 20–22 August 2014. P. 121–130. https://doi.org/10.1145/2631488.2631499
- 41. Jung S. et al. Proximity Zones Based on Perceived Danger in Human-Robot Interaction // Proceedings of the International Conference on Human-Robot Interaction. Melbourne, Australia. 04–06 March 2025. P. 1378–1382.
- 42. Kamide H. et al. A Comparative Psychological Evaluation of a Robotic Avatar in Dubai and Japan // Frontiers in Robotics and AI. 2025. Vol. 11. P. 1426717. https://doi.org/10.3389/frobt.2024.1426717
- 43. Kaplan F. Who Is Afraid of the Humanoid? Investigating Cultural Differences in the Acceptance of Robots // International Journal of Humanoid Robotics. 2004. Vol. 1 (4). P. 465–480. https://doi.org/10.1142/s0219843604000289
- 44. Kastner K. et al. Determinants of the Acceptability of Autonomous (Cargo) Mobility // Transportation Research Interdisciplinary Perspectives. 2021. Vol. 11 (10). P. 100448. https://doi.org/10.1016/j.trip.2021.100448
- 45. Kilner J.M., Friston K.J., Frith C.D. Predictive Coding: An Account of the Mirror Neuron System // Cognitive Processing. 2007. Vol. 8 (3). P. 159–166. https://doi.org/10.1007/s10339-007-0170-2
- 46. Koay K.L. et al. Social Roles and Baseline Proxemic Preferences for a Domestic Service Robot // International Journal of Social Robotics. 2014. Vol. 6 (4). P. 469–488. https://doi.org/10.1007/s12369-014-0232-4
- 47. Kruse T., Pandey A.K., Alami R., Kirsch A. Human-Aware Robot Navigation: A Survey // Robotics and Autonomous Systems. 2013. Vol. 61 (12). P. 1726–1743. https://doi.org/10.1016/j.robot.2013.05.007
- 48. Lehmann H., Rojik A., Hoffmann M. Should a Small Robot Have a Small Personal Space? Investigating Personal Spatial Zones and Proxemic Behavior in Human-Robot Interaction // arXiv:2009.01818v1 [cs.HC]. 2020. https://doi.org/10.48550/arXiv.2009.01818
- 49. Li Y. et al. How Service Robots’ Human-Like Appearance Impacts Consumer Trust: A Study Across Diverse Cultures and Service Settings // International Journal of Contemporary Hospitality Management. 2024. Vol. 36 (9). P. 3151–3167. https://doi.org/10.1108/IJCHM-06-2023-0845
- 50. Lim V., Rooksby M., Cross E.S. Social Robots on a Global Stage: Establishing a Role for Culture During Human–Robot Interaction // International Journal of Social Robotics. 2021. Vol. 13 (6). P. 1307–1333. https://doi.org/10.1007/s12369-020-00710-4
- 51. Mead R., Matarić M.J. Perceptual Models of Human-Robot Proxemics // Experimental Robotics. 2016. Vol. 109. P. 261–276. https://doi.org/10.1007/978-3-319-23778-7_18
- 52. Mertens A. et al. Human-Robot Interaction: Testing Distances That Humans Will Accept Between Themselves and a Robot Approaching at Different Speeds // Ambient Assisted Living: 6. AAL-Kongress 2013, Berlin, Germany, January 22–23, 2013 / Eds. R. Wichert, H. Klausing. Heidelberg: Springer Berlin, 2014. P. 269–286. https://doi.org/10.1007/978-3-642-37988-8_17
- 53. Mu X. et al. Online Robot Motion Planning Methodology Guided by Group Social Proxemics Feature // arXiv:2502.04837v1 [cs.RO]. 2025. https://doi.org/10.48550/arXiv.2502.04837
- 54. Mumm J., Mutlu B. Human-Robot Proxemics: Physical and Psychological Distancing in Human-Robot Interaction // Proceedings of the 6th International Conference on Human-Robot Interaction. Lausanne, Switzerland. 06–09 March 2011. P. 331–338. https://doi.org/10.1145/1957656.1957786
- 55. Murakami H., Feliciani C., Nishiyama Y., Nishinari K. Mutual Anticipation Can Contribute to Self-Organization in Human Crowds // Science Advances. 2021. Vol. 7 (12). P. eabe7758. https://doi.org/10.1126/sciadv.abe7758
- 56. Mutlu B., Forlizzi J. Robots in Organizations: The Role of Workflow, Social, and Environmental Factors in Human-Robot Interaction // Proceedings of the 3rd ACM/IEEE International Conference on Human-Robot Interaction. Amsterdam, Netherlands. 12–15 March 2008. P. 287–294. https://doi.org/10.1145/1349822.1349860
- 57. Nassiri N., Powell N., Moore D. Human Interactions and Personal Space in Collaborative Virtual Environments // Virtual Reality. 2010. Vol. 14 (4). P. 229–240. https://doi.org/10.1007/s10055-010-0169-3
- 58. Neef N.E., Zabel S., Lauckner M., Otto S. What is Appropriate? On the Assessment of Human-Robot Proxemics for Casual Encounters in Closed Environments // International Journal of Social Robotics. 2023. Vol. 15. P. 953–967. https://doi.org/10.1007/s12369-023-01004-1
- 59. Neggers M.M.E., Cuijpers R.N., Ruijten P.A.M., Ijsselsteijn W.A. Determining Shape and Size of Personal Space of a Human when Passed by a Robot // International Journal of Social Robotics. 2021. Vol. 14. P. 561–572. https://doi.org/10.1007/s12369-021-00805-6
- 60. Nomura T., Shintani T., Fujii K., Hokabe K. Experimental Investigation of Relationships Between Anxiety, Negative Attitudes, and Allowable Distance of Robots // Proceedings of the 2nd IASTED International Conference on Human-Computer Interaction. Chamonix, France. 14–16 March 2007. P. 13–18.
- 61. Obaid M. et al. Stop! That Is Close Enough: How Body Postures Influence Human-Robot Proximity // 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). New York, USA. 26–31 August 2016. P. 354–361. https://doi.org/10.1109/ROMAN.2016.7745155
- 62. Oskoei M.A., Walters M.L., Dautenhahn K. An Autonomous Proxemic System for a Mobile Companion Robot // Proceedings of the 2nd International Symposium on New Frontiers in Human-Robot Interaction. Leicester, UK. 29 March – 01 April 2010. P. 9–15.
- 63. Pacchierotti E., Christensen H.I., Jensfelt P. Evaluation of Passing Distance for Social Robots // The 15th IEEE International Symposium on Robot and Human Interactive Communication. Hatfield, UK. 06–08 September 2006. P. 315–320. https://doi.org/10.1109/ROMAN.2006.314436
- 64. Paterson M. Why Robot Embodiment Matters: Questions of Disability, Race and Intersectionality in the Design of Social Robots // Medical Humanities. 2024. Vol. 50 (4). P. 694–704. https://doi.org/10.1136/medhum-2024-013028
- 65. Patompak P., Jeong S., Nilkhamhang I., Chong N.Y. Learning Proxemics for Personalized Human–Robot Social Interaction // International Journal of Social Robotics. 2019. Vol. 12 (2). P. 267–280. https://doi.org/10.1007/s12369-019-00560-9
- 66. Rossi S. et al. User’s Personality and Activity Influence on HRI Comfortable Distances // Proceedings of the International Conference on Social Robotics. Tsukuba, Japan. 22–24 November 2017. P. 167–177. https://doi.org/10.1007/978-3-319-70022-9_17
- 67. Samarakoon S.M.B.P., Muthugala M.A.V.J., Jayasekara A.G.B.P. A Review on Human–Robot Proxemics // Electronics. 2022. Vol. 11 (16). P. 2490. https://doi.org/10.3390/electronics11162490
- 68. Stange S. et al. Self-Explaining Social Robots: An Explainable Behavior Generation Architecture for Human-Robot Interaction // Frontiers in Artificial Intelligence. 2022. Vol. 5. P. 866920. https://doi.org/10.3389/frai.2022.866920
- 69. Stratton L.O., Tekippe D.J., Flick G.L. Personal Space and Self-Concept // Sociometry. 1973. Vol. 36 (3). P. 424–429. https://doi.org/10.2307/2786344
- 70. Syrdal D.S., Koay K.L., Walters M.L., Dautenhahn K. A Personalized Robot Companion? The Role of Individual Differences on Spatial Preferences in HRI Scenarios // RO-MAN 2007: The 16th IEEE International Symposium on Robot and Human Interactive Communication. Jeju, Korea (South). 26–29 August 2007. P. 1143–1148. https://doi.org/10.1109/ROMAN.2007.4415252
- 71. Takayama L., Pantofaru C. Influences on Proxemic Behaviors in Human-Robot Interaction // International Conference on Intelligent Robots and Systems. St. Louis, USA. 10–15 October 2009. P. 5495–5502. https://doi.org/10.1109/IROS.2009.5354145
- 72. Thrun S. Toward a Framework for Human-Robot Interaction // Human–Computer Interaction. 2004. Vol. 19 (1–2). P. 9–24. https://doi.org/10.1080/07370024.2004.9667338
- 73. Trovato G. et al. Cross-Cultural Study on Human-Robot Greeting Interaction: Acceptance and Discomfort by Egyptians and Japanese // Paladyn, Journal of Behavioral Robotics. 2013. Vol. 4 (2). P. 83–93. https://doi.org/10.2478/pjbr-2013-0006
- 74. Trovato G. et al. The Sound or Silence: Investigating the Influence of Robot Noise on Proxemics // Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). Nanjing, China. 27–31 August 2018. P. 713–718. https://doi.org/10.1109/ROMAN.2018.8525795
- 75. Vega A. et al. Socially Aware Robot Navigation System in Human-Populated and Interactive Environments Based on an Adaptive Spatial Density Function and Space Affordances // Pattern Recognition Letters. 2019. Vol. 118. P. 72–84. https://doi.org/10.1016/j.patrec.2018.07.015
- 76. Vigni F., Maglietta D., Rossi S. Too Close to You? A Study on Emotion-Adapted Proxemics Behaviours // 33rd IEEE International Conference on Robot and Human Interactive Communication. Pasadena, USA. 26–30 August 2024. P. 182–188. https://doi.org/10.1109/RO-MAN60168.2024.10731458
- 77. Walters M.L., Oskoei M.A., Syrdal D.S., Dautenhahn K. A Long-Term Human-Robot Proxemic Study // Proceedings – IEEE International Workshop on Robot and Human Interactive Communication. Atlanta, USA. 2011. P. 137–142. https://doi.org/10.1109/ROMAN.2011.6005274
- 78. Wang I., Ruiz J., Kappas A. Body Language Between Humans and Machines // Body Language Communication / Eds. D. Chadee, A. Kostić. Cham: Palgrave Macmillan, 2024. P. 443–476. https://doi.org/10.1007/978-3-031-70064-4_18
- 79. Weiss A. et al. Transferring Human-Human Interaction Studies to HRI Scenarios in Public Space // 13th International Conference on Human-Computer Interaction (INTERACT). Lisbon, Portugal. 05–09 September 2011. P. 230–247. https://doi.org/10.1007/978-3-642-23771-3_18
- 80. Wilcox L.M., Allison R.S., Elfassy S., Grelik C. Personal Space in Virtual Reality // ACM Transactions on Applied Perception. 2006. Vol. 3 (4). P. 412–428. https://doi.org/10.1145/1190036.1190041
- 81. Yang S. et al. Experiences Developing Socially Acceptable Interactions for a Robotic Trash Barrel // 24th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN). Kobe, Japan. 31 August – 01 September 2015. P. 277–284. https://doi.org/10.1109/ROMAN.2015.7333693
- 82. Yeh A. et al. Exploring Proxemics for Human-Drone Interaction // HAI 17 – Proceedings of the 5th International Conference on Human Agent Interaction. Bielefeld, Germany. 17–20 October 2017. P. 81–88. https://doi.org/10.1145/3125739.3125773
- 83. Yu W., Kok S.Y., Srivastava G. EmoiPlanner: Human Emotion and Intention Aware Socially Acceptable Robot Navigation in Human-Centric Environments // Expert Systems. 2025. Vol. 42 (2). P. e13718. https://doi.org/10.1111/exsy.13718
- 84. Zeelenberg M., Nelissen R., Breugelmans S.M., Pieters R. On Emotion Specificity in Decision Making: Why Feeling Is for Doing // Judgment and Decision Making. 2008. Vol. 3 (1). P. 18–27. https://doi.org/10.1017/S1930297500000139