1. Agents of change (2010). Conventional economic models failed to foresee the financial crisis. Could agent-based modelling do better? The Economist, July 24. Available at: https://www.economist.com/finance-and-economics/2010/07/22/agents-of-change
2. Аgents of creation (2003). Artificial “agents” can model complex systems. The Economist, October 11. Available at: https://www.economist.com/science-and-technology/2003/10/09/agents-of-creation
3. Axtell R.L., Epstein J.M., Dean J.S., Gumerman G.J., Swedlund A.C., Harburger J., Chakra-varty S., Hammond R., Parker J., Parker M. (2002). Population growth and collapse in a multiagent model of the Kayenta Anasazi in Long House Valley. Proceedings of the National Academy of Sciences, May, 99 (suppl. 3), 7275–7279. DOI: 10.1073/pnas.092080799
4. Axtell R.L. (2015). Endogenous dynamics of multi-agent firms. SSRN Electronic Journal. DOI: 10.2139/ssrn.2827059
5. Axtell R.L. (2016). 120 million agents self-organize into 6 million firms: A model of the U.S. pri-vate sector. In: Proceedings of the 2016 International Conference on Autonomous Agents & Multiagent Systems (AAMAS '16). International Foundation for Autonomous Agents and Multiagent Systems. Richland, SC, 806–816. Available at: https://dl.acm.org/doi/10.5555/2936924.2937042
6. Axtell R.L. (2001). Zipf distribution of U.S. Firm Sizes. Science, 293 (5536), 1818–1820.
7. Bakhtizin A.R., Ilyin N.I., Khabriev B.R., Makarov V.L., Sushko E.D. (2020). Software and analytical complex “MÖBIUS” — a tool for planning, monitoring and forecasting the socio-economic system of Russia. Artificial Societies, 15 (4). DOI: 10.18254/S207751800012303-2 (in Russian).
8. Bakhtizin A.R., Makarov V.L., Maksakov A.A., Sushko E.D. (2021). Demographic agent-based model of Russia and assessment of its applicability for solving practical management prob-lems. Artificial Societies, 16, 2 (in Russian). DOI: 10.18254/S207751800015357-1
9. Bravo G., Squazzoni F., Boero R. (2012). Trust and partner selection in social networks: An experimentally grounded model. Social Networks, 34, 4, 481–492. DOI: 10.1016/j.socnet.2012.03.001
10. Cederman L.E. (2003). Modeling the size of wars: From billiard balls to sand piles. American Po-litical Science Review, 97 (1), 135–150.
11. Crevald M. van (1977). Supplying war: Logistics from Wallenstein to Patton. New York: Cambridge University Press.
12. Deissenberg C., Hoog S. van der, Dawid H. (2008). EURACE: A massively parallel agent-based model of the European economy. Applied Mathematics and Computation, 204, 541–552. DOI: 10.1016/j.amc.2008.05.116
13. Diamond J. (2002). Life with the artificial Anasazi. Nature, 419, 567–568. DOI: 10.1038/419567a
14. Dou Y., Millington J.D.A, Bicudo Da Silva R.F., McCord P., Viña A., Song Q., Yu Q., Wu W., Batistella M., Moran E., Liu J. (2019). Land-use changes across distant places: design of a telecoupled agent-based model. Journal of Land Use Science, 14, 3, 191–209. DOI: 10.1080/1747423X.2019.1687769
15. Epstein J.M. (2013). Agent_Zero: Toward neurocognitive foundations for generative social science. Princeton: Princeton University Press. 249 p.
16. Epstein J.M. (2002). Modeling civil violence: An agent-based computational approach. Proceed-ings of the National Academy of Sciences. May, 99 (suppl. 3), 7243–7250. DOI: 10.1073/pnas.092080199
17. Epstein J.M. (2006). Generative social science: Studies in agent-based computational modeling. Princeton: Princeton University Press. 352 p.
18. Epstein J.M., Axtell R. (1996). Growing artificial societies: Social science from the bottom up. Washington: Brookings Institution Press. The MIT Press.
19. Farmer J., Foley D. (2009). The economy needs agent-based modelling. Nature, 460, 685–686. DOI: 10.1038/460685a
20. Fleischmann A. (2005). A model for a simple Luhmann economy. Journal of Artificial Societies and Social Simulation, 8, 2. Available at: https://www.jasss.org/8/2/4.html
21. Fosset P., Banos A., Beck E., Chardonnel S., Lang C., Marilleau N., Piombini A., Leysens T., Conesa A., Andre-Poyaud I., Thevenin T. (2016). Exploring intra-urban accessibility and impacts of pollution policies with an agent-based simulation platform: GaMiroD. Systems, 4 (1), 5. Available at: https://doi.org/10.3390/systems4010005
22. Glimcher P.W., Fehr E. (eds.) (2013). Neuroeconomics: Decision making and the brain. Second Edition. Academic Press. 577 p. ISBN-13: 978-0124160088.
23. Halaška M., Šperka R. (2018). Is there a need for agent-based modelling and simulation in busi-ness process management? Organizacija, 51 (4), 255–269. DOI: 10.2478/orga-2018-0019
24. Haldon J.F. (ed.) (2005). General issues in the study of medieval logistics: Sources, problems, methodologies. Leiden, Boston: Brill.
25. Hamill L., Gilbert N. (2009). Social circles: A simple structure for agent-based social network models. Journal of Artificial Societies and Social Simulation, 12 (2), 3. Available at: http://jasss.soc.surrey.ac.uk/12/2/3.html
26. Hommes C., LeBaron B. (Eds.) (2018). Computational economics: Heterogeneous agent model-ing. Handbook in Economics. Elsevier.
27. Huynh N., Perez P., Berryman M., Barthélemy J. (2015). Simulating transport and land use in-terdependencies for strategic urban planning — an agent based modelling approach. Systems, 3 (4), 177–210. Available at: https://doi.org/10.3390/systems3040177
28. Kirman A.P. (1992). Whom or what does the representative individual represent? Journal of Eco-nomic Perspectives, 6 (2), 117–136.
29. Kohler T.A., Gumerman G.J. (2000). Dynamics in human and primate societies: Agent-based modeling of social and spatial processes. Oxford University Press. Published to Oxford Scholarship Online. November. DOI: 10.1093/oso/9780195131673.001.0001
30. Lansing J.S., Kremer J.N. (1993). Emergent properties of Balinese water temple networks: 2 coa-daptation on a rugged fitness landscape. American Anthropologist, 95, 97–114.
31. LeBaron B. (2006). Agent-based Computational Finance. In: H.M. Amman, D.A. Kendrick, J. Rust (Eds). Handbook of Computational Economics. Vol. 2. Ch. 24, 1187–1233. Elsevier. Available at: https://EconPapers.repec.org/RePEc:eee:hecchp:2-24
32. LeBaron B. (2019). Microconsistency in simple empirical agent-based financial models. Computational Economics, 1, 19. DOI: 10.1007/s10614-019-09917-8
33. Lemos C. (2017). Agent-based modeling of social conflict: From mechanisms to complex behavior. Berlin: Springer Verlag.
34. Lemos C., Coelho H., Lopes R.J. (2013). Agent-based modeling of social conflict, civil violence and revolution: State-of-the-art-review and further prospects. CEUR Workshop Proceedings, 1113, 124–138.
35. Levitsky S., Ziblatt D. (2018). How democracies die. New York: Broadway Books.
36. Luhmann N. (1988). Die Wirtschaft der Gesellschaft (Suhrkamp taschenbuch wissenschaft). Frankfurt: Suhrkamp Verlag. 112 p.
37. Makarov V.L., Bakhtizin A.R., Beklaryan G.L., Akopov A.S. (2019). Development of software framework for large-scale agent-based modeling of complex social systems. Software Engi-neering (Programmnaya Ingeneria), 10, 4, 167–177 (in Russian).
38. Makarov V.L., Bakhtizin A.R., Khabriev B.R. (2018). Performance evaluation of the mechanisms strengthening the state sovereignty of Russia. Finance: Theory and Practice, 22 (5), 6–26 (in Russian). DOI: 10.26794/2587-5671-2018-22-5-6-26 (in Russian).
39. Makarov V.L, Bakhtizin A.R., Sushko E.D., Ageeva A.F. (2017). Agent-based approach for modelling the labour migration from China to Russia. Economy of Region, 13, 331–341 (in Russian). DOI: 10.17059/2017-2-1 (in Russian).
40. Makarov V.L., Bakhtizin A.R., Sushko E.D. (2020). Agent-based model as a tool for controlling environment of the region. Journal of the New Economic Association, 45, 151–171. DOI : 10.31737/2221-2264-2020-45-1-6 (in Russian).
41. Matthews R.B., Gilbert N.G., Roach A., Polhill J.G., Gotts N.M. (2007). Agent-based land-use models: A review of applications. Landscape Ecology, 22, 1447–1459. DOI : 10.1007/s10980-007-9135-1
42. Murgatroyd P., Craenen B., Theodoropoulos G., Gaffney V., Haldon J. (2012). Modelling me-dieval military logistics: An agent-based simulation of a Byzantine army on the march. Computational and Mathematical Organization Theory, December, 18, 4, 488–506.
43. Murray-Rust D., Rieser V., Robinson D.T., Miličič V., Rounsevell M. (2013). Agent-based modelling of land use dynamics and residential quality of life for future scenarios. Environ-mental Modelling & Software, 46, 75–89. DOI : 10.1016/j.envsoft.2013.02.011
44. Nabinejad S., Schüttrumpf H. (2017). An agent-based model for land use policies in coastal areas. Coastal Engineering Proceedings, 1 (35), Management. 9. DOI : 10.9753/icce.v35.management.9
45. Peckham R. (2013). Economies of contagion: Financial crisis and pandemic. Economy and Society, 42, 2, 226–248. DOI: 10.1080/03085147.2012.718626
46. Polhill J.G., Parker D., Brown D., Grimm V. (2008). Using the ODD protocol for describing three agent-based social simulation models of land-use change. Journal of Artificial Societies and Social Simulation, 11 (2), 3. Available at: http://jasss.soc.surrey.ac.uk/11/2/3.html
47. Raberto M., Cincotti S., Teglio A. (2014). Economic policy and the financial crisis. Routledge Frontiers of Political Economy. Taylor & Francis, ch. 9.
48. Rand W., Rust R.T. (2011). Agent-based modeling in marketing: Guidelines for rigor. Interna-tional Journal of Research in Marketing, 28, 3, September, 181–193. DOI: 10.1016/j.ijresmar.2011.04.002
49. Stepanenko V.M., Bopape M.J., Glazunov A.V., Gritsun A.S., Lykosov V.N., Mortikov E.V., Porto F., Rivin G.S., Sithole H., Tolstykh M.A., Vilfand R.M., Volodin E.M., Voevodin V.V. (2020). HPC and Weather/Climate/Environment applications: Global challenges and opportunities for BRICS-cooperation. Presentation on 4th Meeting of the BRICS Working group on Information and Communication Technology and High Performance Computing. Nizhny Novgorod, Russia, 2020 October 8–9 Available at: https://istina.msu.ru/conferences/presentations/338451642/
50. Teglio A., Mazzocchetti A., Ponta L., Raberto M., Cincotti S. (2015). Budgetary rigor with sti-mulus in lean times: Policy advices from an agent-based model. Working Papers 2015/04. Economics Department. Universitat Jaume I, Castellón (Spain). Available at: https://ideas.repec.org/p/jau/wpaper/2015-07.html
51. Tesfatsion L. (2002). Agent-based computational economics: Modelling economies as complex adaptive systems. December. Available at: http://www.econ.iastate.edu/tesfatsi (http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.64.7064&rep=rep1&type=pdf).
52. Will M., Groeneveld J., Frank K., Müller B. (2020). Combining social network analysis and agent-based modelling to explore dynamics of human interaction: A review. Socio-Environmental Systems Modelling, 2, 16325. DOI: 10.18174/sesmo.2020a16325
53. Yakovenko V.M., Rosser J.B. (2009). Colloquium: Statistical mechanics of money, wealth, and income. Rev. Mod. Phys. 81, 1703 (December 2).
Comments
No posts found