ON THE PROPERTIES OF CES PRODUCTION FUNCTIONS IN A MODEL OF PRODUCTION WITH INTERMEDIATE GOODS
Table of contents
Share
QR
Metrics
ON THE PROPERTIES OF CES PRODUCTION FUNCTIONS IN A MODEL OF PRODUCTION WITH INTERMEDIATE GOODS
Annotation
PII
S042473880000616-6-1
Publication type
Article
Status
Published
Pages
91-102
Abstract
CES production functions are widely used in economic growth and development researches. However, it is not always taken into account that properties of different specifications of CES functions (continual or discrete, with the weights or without them) are rather differ. The properties of CES production functions, essential for analysis of economic models, are studied. The CES function is proved with a finite number of arguments with normalized weights increases with the elasticity of substitution parameter, while under the absence of weights this parameter of the CES function decreases. Pattern of behavior of the CES function with argument x(i), defined on a continual set [0,N], is operated by the value N. Under N = 1 the function with continual argument behaves (in respect of the elasticity of substitution) similarly to the function with a finite number of arguments with weights, but under N > 1 its behavior is quite different. There are important differences between the continual and the discrete CES functions when the elasticity of substitution parameter converges to zero. We show the mistakes when continual CES functions are applied to models of production with intermediate goods which have gained popularity in recent years. We also show some shortcomings of continual models with intermediate goods when using these models for the analysis of economic development problems.
Keywords
production function, CES function, continuous and discrete economical models, monotony, minimum, essential infimum
Date of publication
01.04.2016
Number of purchasers
1
Views
1119
Readers community rating
0.0 (0 votes)
Cite   Download pdf

References



Additional sources and materials

Afanas'ev A.A., Ponomareva O.S. (2014). Proizvodstvennaya funktsiya narodnogo khozyajstva Rossii v 1990-2012 gg. // Ehkonomika i matematicheskie metody. T. 50. № 4. S. 21-33.         

Barkalov N.B. (1981). Proizvodstvennye funktsii v modelyakh ehkonomicheskogo rosta. M.: Izdatel'stvo MGU.          

Ershov Eh.B. (2013). Kompozitnye proizvodstvennye funktsii // Ehkonomicheskij zhurnal Vysshej shkoly ehkonomiki. T. 17. № 1. S. 108-129.        

Klejner G.B. (1986). Proizvodstvennye funktsii: teoriya, metody, primenenie. M.: Finansy i statistika.           

Matveenko A.V., Polyakova E.V. (2012). Modelirovanie izmeneniya tekhnologij i potrebitel'skikh predpochtenij // Vestnik Kostromskogo gosudarstvennogo universiteta im. N.A. Nekrasova. T. 18. № 6. S.159-162.             

Matveenko V.D. (2009). "Anatomiya" proizvodstvennoj funktsii: tekhnologicheskoe menyu i vybor nailuchshej tekhnologii // Ehkonomika i matematicheskie metody. T. 46. № 2. S. 105-115.                

Khardi G.G., Littl'vud Dzh.E., Polia G. (1948). Neravenstva. M.: Gosudarstvennoe izdatel'stvo inostrannoj literatury.    

Bullen P.S. (2004). Handbook of Means and Their Inequalities. Dordrecht: Kluwer Academic Publishers.

Combes P.-P., Mayer T., Thisse J.-F. (2008). Economic Geography: The Integration of Regions and Nations. Princeton: Princeton University Press.        

Dixit A.K., Stiglitz J.E. (1977). Monopolistic Competition and Optimum Product diversity // American Economic Review. Vol. 67. No. 3. P. 297-308.            

Dixit A.K., Stiglitz J.E. (2004). Monopolistic Competition and Optimum Product Diversity (May 1974). In: “Monopolistic competition revolution in retrospect’   

Brakman S., Hejdra B.J. (eds.). Princeton: Princeton University Press. P. 70-88. Ethier W.I. (1982). National and International Returns to Scale in the Modern Theory of International Trade // American Economic Review. Vol. 72. No. 3. P. 389-405.    

Growiec J. (2008). Production Functions and Distributions of unit Factor Productivities: Uncovering the Link // Economic Letters. Vol. 101. No. 1. P. 87-90.        

Jones C.I. (2005). The Shape of Production Function and the Direction of Technical Change // Quarterly Journal of Economics. Vol. 120. No. 2. P. 517-549. 

Jones C.I. (2011). Intermediate Goods and Weak Links in the Theory of Economic Development // American Economic Journal: Macroeconomics. Vol. 3. P. 1-28.           

La Grandville O. de (2011). A New Property of General Means of Order with an Application to the Theory of Economic Growth // Australian Journal of Mathematical Analysis and Applications. Vol. 8. No. 1. Article 4.               

La Grandville O. de, Solow R.M. (2006). A Conjecture on General Means // Journal of Inequalities in Pure and Applied Mathematics. Vol. 7. No. 1. P. 1-3.          

Nam P.T., Minh M.N. (2008). Proof for a Conjecture on General Means // Journal of Inequalities in Pure and Applied Mathematics. Vol. 9. No. 3. Article 86.  

Romer P. (1990). Endogenous Technological Change // Journal of Political Economy. Vol. 98. No. 5. P. S71- S102.             

Rosen S. (1981). The Economy of Superstars // American Economic Review. Vol. 71. No. 5. P. 845-858.  

Solow R. (1956). A Contribution to the Theory of Economic Growth // Quarterly Journal of Economics. Vol. 70. No. 1. P. 65-94.

Comments

No posts found

Write a review
Translate