Additional sources and materials
- Barany, MacKenzie, 2014 – Barany M.J., MacKenzie D. Chalk: Materials and Concepts in Mathematics Research // Representation in Scientific Practice Revisited / Ed. by C. Coopmans, J. Vertesi, M. Lynch and S. Woolgar. Cambridge, MA: The MIT Press, 2014. P. 107−129.
- Bloor, 1991 – Bloor D. Knowledge and Social Imagery. 2nd ed. Chicago: University of Chicago Press, 1991. 203 p.
- Bueno, 2007 – Bueno O. Incommensurability in Mathematics // Perspectives on Mathematical Practices / Ed. by B. Van Kerkhove and J.P. Van Bendegem. Dordrecht: Springer, 2007. P. 83−105.
- Bueno, 2012 – Bueno O. Styles of Reasoning: A Pluralist View // Studies in History and Philosophy of Science. Part A. 2012. Vol. 43. No. 4. P. 657−665.
- Bunge, 1983a – Bunge M. Treatise on Basic Philosophy, Vol. 5. Epistemology and Methodology I: Exploring the World. Dordrecht: D. Reidel Publishing Company, 1983. 404 p.
- Bunge, 1983b – Bunge M. Treatise on Basic Philosophy, Vol. 6. Epistemology and Methodology II: Understanding the World. Dordrecht: D. Reidel Publishing Company, 1983. 296 p.
- Corry, 1989 – Corry L. Linearity and Reflexivity in the Growth of Mathematical Knowledge // Science in Context. 1989. Vol. 3. No. 2. P. 409−440.
- Corry, 1993 – Corry L. Kuhnian Issues, Scientific Revolutions and the History of Mathematics // Studies in History and Philosophy of Science. Part A. 1993. Vol. 24. No. 1. P. 95−117.
- Corry, 1996 – Corry L. Paradigms and Paradigmatic Change in the History of Mathematics // Paradigms and Mathematics / Ed. by E. Ausejo and M. Hormigón. Madrid: Siglo XXI de España Editores, 1996. P. 169−191.
- Corry, 2004/1996 – Corry L. Modern Algebra and the Rise of Mathematical Structures. 2nd rev. ed. Basel: Birkhäuser, 2004. 451 p. (First edition was published in 1996.)
- Crowe, 1975 – Crowe M.J. Ten “Laws” Concerning Patterns of Change in the History of Mathematics // Historia Mathematica. 1975. Vol. 2. No. 2. P. 161−166.
- Dauben, 1984 – Dauben J.W. Conceptual Revolutions and the History of Mathematics: Two Studies in the Growth of Knowledge // Transformation and Tradition in the Sciences: Essays in Honor of I. Bernard Cohen / Ed. by E. Mendelsohn. N.Y.: Cambridge University Press, 1984. P. 81−103.
- Dauben, 1996 – Dauben J.W. Paradigms and Proofs: How Revolutions Transform Mathematics // Paradigms and Mathematics / Ed. by E. Ausejo and M. Hormigón. Madrid: Siglo XXI de España Editores, 1996. P. 117−148.
- Elkana, 1981 – Elkana Y. A Programmatic Attempt at an Anthropology of Knowledge // Sciences and Cultures: Anthropological and Historical Studies of Sciences / Ed. by E. Mendelsohn and Y. Elkana. Dordrecht: D. Reidel, 1981. P. 1−76.
- François, Van Bendegem, 2010 – François K., Van Bendegem J.P. Revolutions in Mathematics. More Than Thirty Years after Crowe’s “Ten Laws”. A New Interpretation // PhiMSAMP. Philosophy of Mathematics: Sociological Aspects and Mathematical Practice / Ed. by B. Löwe and T. Müller. L.: College Publications, 2010. P. 107‒120.
- Gillies (ed.), 1992 – Revolutions in Mathematics / Ed. by D. Gillies. N.Y.: Oxford University Press, 1992. 353 p.
- Grabiner, 1974 – Grabiner J.V. Is Mathematical Truth Time-Dependent? // The American Mathematical Monthly. 1974. Vol. 81. No. 4. P. 354−365.
- Greiffenhagen, 2014 – Greiffenhagen C. The Materiality of Mathematics: Presenting Mathematics at the Blackboard // The British Journal of Sociology. 2014. Vol. 65. No. 3. P. 502−528.
- Kitcher, 1983 – Kitcher P. The Nature of Mathematical Knowledge. N.Y.: Oxford University Press, 1983. 296 p.
- Kuznetsova, I.S. Gnoseologicheskiye problemy matematicheskogo znaniya [Epistemological Problems of Mathematical Knowledge]. Leningrad: Leningrad University Press, 1984. 136 pp. (In Russian)
- McCleary, McKinney, 1986 – McCleary J., McKinney A. What Mathematics Isn’t // Mathematical Intelligencer. 1986. Vol. 8. No. 3. P. 51−53, 77.
- Porter, 1995 – Porter T.M. Trust in Numbers: The Pursuit of Objectivity in Science and Public Life. Princeton, NJ: Princeton University Press, 1995. 310 p.
- Pourciau, 2000 – Pourciau B. Intuitionism as a (Failed) Kuhnian Revolution in Mathematics // Studies in the History and Philosophy of Science. Part A. 2000. Vol. 31. No. 2. P. 297−329.
- Rodin, A.V. “Kontseptsiya permanentnoy nauchnoy revolyutsii i osnovaniya matematiki (vozvrashchayas’ k sporu mezhdu Krou i Daubenom)” [The Concept of Permanent Scientific Revolution and the Foundations of Mathematics: the Crowe−Dauben Debate Revisited], in: Revolyutsiya i evolyutsiya: modeli razvitiya v nauke, kul’ture, sotsiume [Revolution and Evolution: Models of Development in Science, Culture and Society], ed. by I.T. Kasavin and A.M. Feigelman. Nizhny Novgorod: Lobachevsky University Press, 2017, pp. 34−36. (In Russian)
- Ruzavin, G.I. “Ob osobennostyakh nauchnykh revolyutsiy v matematike” [On the Special Characteristics of Scientific Revolutions in Mathematics], in: Metodologicheskiy analiz zakonomernostey razvitiya matematiki [Methodological Analysis of the Patterns of Change in Mathematics], ed. by A.G. Barabashev, S.S. Demidov and M.I. Panov. Moscow: VINITI, 1989, pp. 180−193. (In Russian)
- Sialaros (ed.), 2018 – Revolutions and Continuity in Greek Mathematics / Ed. by M. Sialaros. Berlin: De Gruyter, 2018. 391 p.
- Sokuler, Z.A. Zarubezhnyye issledovaniya po filosofskim problemam matematiki 90-kh godov: Nauchno-analiticheskiy obzor [Foreign Studies in the Philosophy of Mathematics of the 1990s: A Review]. Moscow: INION, 1995. 75 pp. (In Russian)
- Tymoczko (ed.), 1986 – New Directions in the Philosophy of Mathematics: An Anthology / Ed. by T. Tymoczko. Boston, MA: Birkhäuser, 1986. 341 p.
- Wilder, 1981 – Wilder R.L. Mathematics as a Cultural System. Oxford: Pergamon Press, 1981. 190 p.
Comments
No posts found